博客
关于我
flink读取hive表数据的一些现象
阅读量:763 次
发布时间:2019-03-23

本文共 384 字,大约阅读时间需要 1 分钟。

一个可能的解释是,配置文件中的executionplanner设置直接影响了Flink如何处理数据。默认的execution设置为streaming,这适用于处理实时数据流,但在某些情况下,批量处理可能提供了更好的性能或数据一致性。与此同时,planner设置到batch说明Flink使用批量处理模式。

用户提到的现象显示,无论是创建Hive表还是Flink流表,由于type: streamingbatch都能正常工作,说明它们在不同的数据量和处理需求下都可以有效使用。特别是在处理外部日志文件时,批量处理能完全读取数据,而流处理则可能遇到读取逻辑上的问题。这可能是因为批处理模式更适合处理完整的、离散的数据集,而流处理则需要数据持续生成。

通过这些分析,可以得出配置文件中的execution设置直接反映了Flink处理数据的方式,从而影响了查询和处理性能。

转载地址:http://eykkk.baihongyu.com/

你可能感兴趣的文章
Opencv cv2.putText 函数详解
查看>>
opencv glob 内存溢出异常
查看>>
opencv Hog Demo
查看>>
opencv Hog学习总结
查看>>
opencv Mat push_back
查看>>
opencv putText中文乱码
查看>>
OpenCV Python围绕特定点将图像旋转X度
查看>>
opencv resize
查看>>
Opencv Sift和Surf特征实现图像无缝拼接生成全景图像
查看>>
opencv SVM分类Demo
查看>>
OpenCV VideoCapture.get()参数详解
查看>>
opencv videocapture读取视频cap.isOpened 输出总是false
查看>>
opencv waitKey() 函数理解及应用
查看>>
OpenCV 中的图像转换
查看>>
OpenCV 人脸识别 C++实例代码
查看>>
OpenCV 在 Linux 上的 python 与 anaconda 无法正常工作.收到未实现 cv2.imshow() 的错误
查看>>
Opencv 完美配置攻略 2014 (Win8.1 + Opencv 2.4.8 + VS 2013)上
查看>>
opencv 模板匹配, 已解决模板过大程序不工作的bug
查看>>
OpenCV 错误:(-215)size.width>0 &&函数imshow中的size.height>0
查看>>